【摘要】针对分组角点检测网络在目标检测过程中,由于目标尺寸过小或同类目标空间距离较小而导致检测失效的问题,提出一种边缘特征增强的CornerNet目标检测算法OEC。该算法通过分离特征的高低频信息提取更多的高频信息,增强目标的边缘轮廓特征,解决关键点定位不准确的问题,提高目标的框定效果,进一步提升检测精度。仿真结果表明,该算法对行人、车辆等目标检测效果均有提高,在COCO数据集上的检测结果与CornerNet相比,mAP提高0. 9%,可应用于无人驾驶与智能机器人等场景。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中外医疗》 2015-07-06
《现代制造技术与装备》 2015-06-26
《中外医疗》 2015-07-03
《铁道运营技术》 2015-06-25
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点